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Abstract- In this paper the new idea of homogenization of stochastic interface structural defects
in the matrix of a fiber composite, recently proposed by the first author, is extended to the contact
zones of both components. The physical mechanism ofthe occurrence ofinterface defects is described
and different versions of location of these defects on fiber-matrix boundary are tested using the
stochastic finite element method (SFEM). Two first moments of the displacement random fields are
computed and a new SFEM formulation for such problems is proposed. Copyright © 1996 Elsevier
Science Ltd.

I. INTRODUCTION

Most of the current theories which characterize mechanical properties of fiber composite
materials assume that the fibers form some kind of regular array (square, hexagonal,
etc.). Unfortunately, most composites have non-periodic structure with practically random
geometry (Batdorf, 1978; Batdorf and Ghaffarian, 1984).

Randomness in composite geometry occurs also on its micro-scale. This results mainly
from the structure of molecular matter, natural macroscopic heterogeneity (porosity and
inclusions), technological inaccuracies (debonding of fiber surface from surrounding
matrix) or degradation ofcomponent materials (ageing and fatigue processes) (Kelly, 1989;
Moavenzadeh, 1990). For many years these uncertainties have been approximated by the
stochastic nature of elastic properties; this idea first appeared at the beginning of the 1960s
(Beran, 1968; Christensen, 1979).

In general, probabilistic models in composite materials theories have been connected
mainly with statistical theories of their strength (Phoenix and Smith, 1983; Phoenix and
Tierney, 1983; Zweben and Rosen, 1970), Dyson and Bethe-Salpether hierarchical equa­
tions (Sobczyk, 1982) and the derivation of the effective properties (Arminjon, 1991;
Ostoja-Starzewski and Wang, 1989) and bounds of these properties (Avellaneda, 1987).
Because of this fact numerical investigations have been based on Monte-Carlo simulations
only and have been applied to the problem of critical crack size (Barry, 1978) and homo­
genization problems (Kaminski, 1996; Sab, 1992).

However, there are many other probabilistic methods in computational mechanics. In
addition to Monte-Carlo simulation the following approaches are available, for example:
Fisher's theory of experiments (Fisher, 1971), stratified sampling and Latin hypercube
sampling (Liu et al., 1986) or the stochastic finite element method (SFEM) (Hien, 1990;
Kleiber and Hien, 1992; Liu et al., 1986) which was recently proposed for composite
behavior modeling in Kaminski and Gajl (1995).

It is well known that mechanical properties of a composite depend on the properties
of its constituents and on their interaction. The most important technological problems
connected with the fiber composites are the interfacial microcracks (resulting from thermal
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incompatibility of composite constituents), interfacial stress concentrations and degra­
dation mechanisms. In most environments composites absorb water, which can break the
interfacial bonds between fiber and matrix and lead to the reduction of load transfer and
worsening of the overall mechanical properties of the structure. Water penetration can
cause swelling and plastification of the matrix, and capillary tubes along the fiber-matrix
interface can then occur. The presence of water on the fiber-matrix boundary leads to
further degradation of the fiber and generates microcracks with water penetration extending
deeper in the direction parallel to the fiber orientation. The phenomena described above
may lead to interphase debonding, interfacial sliding and even to fiber pull-out.

The internal geometry of the stochastic composite is the basic difficulty in the devel­
opment of analytical expressions for the elastic constants. This problem has been
approached in a number of ways (Ashton et ai., 1969; Christensen, 1979; Hashin, 1972;
Sendeckyj, 1974) using bounding methods for elastic properties (Hashin, 1965; Hashin and
Shtrikman, 1963; Hill, 1964; Milton and Kohn, 1988), special models, for example the
composite cylinder assemblage (Christensen, 1979; Hashin, 1972), and Halpin-Tsai equa­
tions (Ashton, 1969). Nowadays, the most popular micromechanical approaches to homo­
genization problems are direct particle interaction methods (Chang et ai., 1995; Chen and
Acrivos, 1978) and "effective medium methods" such as:

• simplified mechanics of materials type equations (cf. Caruso and Chang, 1995);
• fiber substructuring model (cf. Murthy and Chamis, 1992);
• vanishing fiber-diameter model (cf. Bahei-EI-Din et ai., 1981);
• self-consistent model (Budiansky, 1965; Hill, 1964);
• Mori-Tanaka model (Benveniste et ai., 1990; Mori and Tanaka, 1973);
• methods of cells (cf. Aboudi, 1991).

In practice this problem is much more complicated because matrices are often made of
viscoelastic or plastic materials (Kelly, 1989; Moavenzadeh, 1990) and description of the
nonlinear behavior is complex even for simple loading conditions (Adams, 1970; Dvorak
and Rao, 1976). Uncertainties in microgeometry interface in nonlinear problems are also
very important with respect to such aspects as localization of plastic zones (Drucker, 1975;
Dvorak and Rao, 1976), thermomechanical effects and composite failure criteria (Tsai and
Wu, 1971). It would therefore seem important to determine in what way the stochastic
interface between both composite phases influences the composite behavior. An analysis of
this problem will be performed here using the example of a plane section of a periodic fiber
composite with a square periodicity cell and a centrally located fiber with a circular cross­
section. The fibers are long, unidirectionally aligned and deterministically located within
the composite. Random varying elastic properties of the constituents are assumed and the
matrix is considered to be brittle. As has been shown by computational simulations (Noor
and Shah, 1993) fiber composites show the highest sensitivity to changes ofelastic properties
in this plane. The results presented by Kaminski (1995) demonstrated that in the range of
linear-elastic behavior, with discontinuities properly located on the fiber-matrix boundary
and for the proper parameters of these discontinuities, it is possible that both the phases
will locally debond. With further increase of external load we have a completely different
primary geometry of the nonlinear problem, thus we can obtain qualitatively and quan­
titatively different results.

In numerical modeling of contact problems the statistical parameters of the contact
zone (interphase) discontinuities are usually replaced with deterministic correctors. As a
result a new nonlinear constitutive relation is established for the contact region (Mital et
ai., 1993;WriggersandZavarise, 1993;Zavariseetai., 1992a;Zavariseetai., 1992b). This
deterministic approximation has been mainly due to the lack of proper stochastic numerical
tools. Independently from the contact formulations, the interphase defect models were
developed. One of the first approaches was the "spring-layer model" employed by Ben­
veniste (1985) and Hashin (1990). The effect of a sliding interface on the elastic properties
of random composites was investigated by Jasiuk et ai. (1992), while the effect of interphase
flaws and matrix cracks on these properties was studied by Achenbach and Choi (1979)
and Choi and Achenbach (1995). In homogenization problems variational inequalities have
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also been used for deterministic analysis of interface discontinuities and microcracks (Gajl,
1990; Telega, 1988). Methods applied in the above-mentioned formulations do not,
however, enable one to obtain stochastic characterization of displacement and stress fields.

From the point of view of the degradation phenomena in a composite structure, as
described above, we can assume that there are "bubbles" occurring in the contact zone of
the matrix region (cf. Kaminski, 1995). These "bubbles" were considered for the first time
in micro-mechanical approaches to the contact problems cited above. They are located on
the contact surface, with some "teeth" with sharp sides directed towards the geometric
centre of the fiber, which technologically occur for example in the superconducting coils in
the corresponding fiber zone. We further assume that the sizes of these "bubbles" and
"teeth", as well as the frequency of their occurrence on the fiber circumference in a
periodicity cell, are random variables with a Gaussian distribution. The regions containing
the random discontinuities will be separated geometrically in both phases and then replaced
with homogenized materials. The problem of linear elasticity defined in the region with
stochastic geometry (difficult even for numerical analysis) will be replaced by an equivalent
problem with deterministic geometry with randomly varying elastic properties, which will
be analysed numerically using the SFEM. Due to this it will be possible to consider the
correlation of the elastic properties in the region of the given material and in the contact
zone within the material, and also to obtain as a final result the first two probabilistic
moments of the displacement field and the expected values of the stress tensor.

2. MATHEMATICAL INTERFACE DEFECTS MODEL

2.1. Problem formulation
Let us suppose that Y c 0 2 is a periodic two-phase linear-elastic composite structure

with randomly varying elastic properties in an undeformed and unstressed state (Kaminski,
in press), where°is a periodicity cell of Y, 0 1 is the fiber region and O2 is the matrix region
(Fig. 1).

Next we assume that°is a bounded simple-connected region uniplanar with the X 3 = 0
plane, and having two perpendicular symmetry axes. Let OJ and O2 be disjoint coherent
regions such that °= 0 1 U O2 containing linear-elastic transversely isotropic homogeneous
media.

Let Young's modulus e = e(x) be a Gaussian random variable, e(x) = e(x; w), where
x EO; W E S, where S is an additional probability space and the expected values vector is
defined as follows:

y

Fig. 1. The periodicity cell of fiber composite structure.
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[
var(ed 0 ]

cov(eh e) = ,o var(e2)

(1)

(2)

where cov(e], e2) = 0 due to the lack of correlation of random functions describing the
elastic properties in the 0t and O2 regions, which can be justified from the physical point
of view.

The Poisson's ratio is assumed to be a deterministic function so that

(3)

Let us define the random elasticity tensor field C;jklx; w) :

(4)

where i,j, k, I = 1,2.
With the elastic properties in°so defined we seek a random displacement field Ui(X ; w)

and a random stress tensor O"ij(x ; w) satisfying the following boundary-value problem:

O"ij)X; w) = 0,

U;(X; w) = il;(X; w); E ana,

(5)

(6)

(7)

(8)

(9)

2.2. Homogenization ofcontact zones
Let us assume a contact between the linear-elastic transversely isotropic regions

0 1 c 912 and O2 c 912 on the 0012 interface (Fig. 2). The stochastic elastic behavior of these

Fig. 2. Macro-geometry of the interphase boundary.
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Fig. 3. Stochastic defects on the interphase boundary.

regions is uniquely characterized by the first two moments of the Young's modulus and the
deterministic function of the Poisson's ratio.

Next, let us assume that there are discontinuities with random volume and frequency
and that these are Gaussian variables on ao12. We will assume that each of these dis­
continuities has a continuous boundary (cf. Fig. 3).

Let D I and D z denote the total area of these discontinuities in 0 1 and oz

D] = 0D](i); D z = 0DZ(i).
;=1 i=]

We will establish regions C j CO l and Cz C Oz such that, with probability equal to I,
D I C C I and Dz C Cz. For this purpose let us introduce random functions Aj{l)(x; w) where
j = 1,2 such that:

(10)

Because of the assumed continuity along the Dj(i) boundary there exist expected values and
variances of Aj(l)(x ;w). In addition let us define

(11)

It is easy to prove that Cj can be expressed in the following form :

(12)

To replace the contact problem in regions 0] and Oz with an equivalent stochastic
problem of elasticity theory we can average the elasticity constants e(x; w) and v(x) in the
regions Cj . To do this we use the homogenization method. According to this method the
effective property reff) characterizing the homogenized region °is an adequate average of
the Yi properties defined on continuous, coherent subsets Oi of n such that

In the deterministic case this average is described by the equation
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L:Yj(X)·Oi

y<eff) = --I-Q-I-; X E Q, (13)

where 1QI is the two-dimensional Lesbegue measure of Q. Let us assume that IQI is a
deterministic variable. Thus, the first two moments of y<effl(w) variable can be calculated
for the contact problem from the following equations:

I
var [yleff) (w)] = --I: var [Y;(x; w)]var [Q;(w)]; xEQ,

I Q 1
2

;

(14)

(15)

which result from the lack of correlation of Q i and the function Yj defined on Qi'

In this way the characterized homogenization (averaging) of contact zones on Q, for
all distributions of discontinuities with the same number and frequency gives the same
probabilistic output of y<eff)(w). Thus in the composite periodicity cell with averaged
interphase we may analyse only a quarter of this cell.

2.3. Homogenization o/matrix contact zone
Let us suppose that there is a finite number of discontinuities in the matrix region

located on the fiber-matrix interface. These discontinuities are approximated as "bubbles"
(Kaminski, 1995) with their diameters placed on the interface (Fig. 4). The random dis­
tribution of the assumed defects is uniquely defined by the expected values and variances
of the frequency and radius of the "bubbles". As shown below, there is a sufficient number
of parameters to obtain a complete characterization of the contact zone averaged elastic
constants (Fig. 5).

Using eqns (14) and (15) we can establish the expected value and the variance of the
effective Young's modulus ek, the terms which are missing in the covariance matrix of this
modulus and also the Poisson's ratio. The expected value can be derived as

y

Ob(i)

x

Fig. 4. Stochastic interphase defects in the matrix region.
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R

1_.__---"R'-=------ .. I ~2c

Fig. 5. The contact zone in the matrix region.

As it can be easily seen in the above relation we have

In a similar way we obtain the variance as

var [e2c] = va{(1- ~J.e2J
This equation can be transformed to the following form (see Kaminski, 1995),

which, neglecting moments of higher than second order, can be reduced to

Now the distribution parameters Sb have to be found. There holds

where M b is the number of 0b(i) regions in 02c equal to

Therefore, we have

(16)

(17)

(18)

(19)

(20)

(21)

(22)
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(23)

(24)

From the definition of expected value we obtain

Finally, we find the variance of Sb as

It can be shown that this expression may be transformed into the form

(25)

(26)

By substituting the equations describing the Sb distribution parameters into the
relations describing expected value and variance of the ek modulus distribution we can
similarly derive the data necessary for the numerical analysis.

It should be observed that by homogenizing the Poisson's ratio in Ok we obtain

(28)

2.4. Homogenization offiber contact zone
By arguments similar to those given in Section 2.3, in order to carry out the averaging

process over the contact zone we have to approximate the random defects on the fiber side
of composite interface by a sequence of simple geometrical forms. Let us therefore assume
a finite number of these discontinuities is added to the contact zone. The fiber material has
good (much better than the matrix) resistance to degradation (Christensen, 1979; Kelly,
1989; Moavenzadeh, 1990) and so we approximate defects in the 0 1 region as "teeth" with
their "sharp" sides directed towards the fiber centre. A single discontinuity is made by
complementing of a two circle quarters to a rectangle (Figs 6 and 7).

As in the previous case we have

and

E[elcJ = E[eIJ • (1- Sl .E[StJ)
!:l"

(29)
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Fig. 6. Stochastic interphase defects in the fiber region.

The relations describing the discontinuity parameters will have a different form

so that

(30)

(31)

R

\
\
\
I

I~ 1~1
1___-----'R~_----l

Fig. 7. The contact zone in the fiber region.
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var [Stl = (2- ~y (E Z[r,l + var [r,D Z•var [Mil

(
TIZ)Z

+ 2' 2- 2 .var [r,l . (EZ[M,l +var [MtD • (2EZ[r,l + var [r,D·

The Poisson's ratio in the contact region associated with the fiber is then given by

Vic = (1- EiSt )). VI'
n l .,

(33)

(34)

Finally, the covariance matrix of Young's modulus in the n region takes the following
form:

o
o

var [ezcl

cov [ez Cl ezl

(35)

Zeroing of the corresponding covariance matrix can be achieved on the basis of the assumed
mutual independence of Young's modulus random variables within the fiber, its contact
zone and its associated regions within the matrix.

3. NUMERICAL ANALYSIS

3.1. Computational implementation
Denoting the random variable of this problem (i.e. the Young's modulus) as a vector

{br(x; w)} and its probability densities by g(br) and g(br,bS), respectively, r, S = 1,2 ... , R,
we can define the expected values as :

f
+X

E[br] = ~X brg(br) dbr,

and the covariances as

cov(b',bS) = f~: f~: (b'-E[b'D(bS-E[bSDg(b',bS)db'dbs.

(36)

(37)

Generally the variational formulation, equivalent to the previously derived equation
system (5)-(9), obtained from the Hamilton's Theorem leads to the following algebraic
system of equations (Hien, 1990; Kleiber and Hien, 1992; Liu et al., 1986):

(38)

(39)
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(40)

(41)

and 1 :::; r, s :::; R (R~the total number of the random vector components). Zeroth order
functions from the FEM equations are denoted by (.)0 and (y, (ys~the first and the
second partial derivatives with respect to the random variables. K, q and Q denote the
global stiffness matrix displacement and external load vectors, respectively, It is easy to
prove (Kaminski and Gajl, 1995) that the algebraic equation system (38)-(40) reduces to:

(42)

(43)

(44)

In the above equations we compute successively qO from the first, q,r from the second and
q,rs from the last equation and then derive the expected values of the displacement as

and its covariances

cov(q~,qp) = q~qtcov(br,b'),

The expected values of the stress tensor in the finite element e are given by

E[ e 1- cO(e)B(e) ° +I [2c,r(e) ,s +CO(e) ,rs lB(e) (br bS )
aij - ijkl klaqa(e):2 ijkl q,(e) ijkl qa(e) kla cov , '

(45)

(46)

(47)

The general purpose of the numerical analysis is to test the stochastic elastic behavior
of a fiber composite when the Young's moduli of the component materials are random
variables and there are stochastic discontinuities localized on the interface of both phases
of this composite. Moreover, numerical tests are carried out to establish the sensitivity of
the averaged elastic constants with respect to the frequency of interface defects and the
volume in a periodicity cell quarter.

The finite element discretization used in the computational tests is shown in Fig. 8 and
9~a quarter model with smaller contact zones in the upper figure and with larger ones in
the lower one. This example (without the interface analysis) has been analysed previously
(cf. Kaminski, 1996).

The numerical implementation enabling these computations is based on the 4th nodes
isoparametric rectangular plane element of the POLSAP system (Bathe et aI., 1973; Hien,
1990). The auxiliary procedures required to average Young's modulus and Poisson's ratio
can easily be incorporated into the POLSAP system as a special purpose Interface Stochastic
Plane Element. The composite structure is subjected to uniform tension on the vertical cell
boundary (60 finite elements with 176 d.f.) ; the plane strain element with unit thickness is
used. Six numerical tests have been performed assuming small and large contact zones on
both sides of the interface, with different values of discontinuity frequency (in turn: 0%,
25% and 50%). In each, the first two moments of the displacement function are observed
on the phase boundary and on the vertical edge subjected to tension, and the coefficient of
variation of displacements is given by the formula
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Fig. 8. Discretization of fiber composite with smaller contact zone.

Fig. 9. Discretization of fiber composite with greater contact zone.



Stochastic structural interface defects 3047

a[b(x;w)] =
var [b(x; w)]

E2 [b(x;w)]
(48)

The material properties of fiber and matrix are taken as follows: E(el) = 84.0 GPa,
VI = 0.22, a(el) = 4.2 GPa, E(e2) = 4.0 GPa, a(e2) = 0.4 GPa, V2 = 0.34 (expected values
and standard deviations of the Young's modulus and Poisson's ratio, respectively).

3.2. Results and discussion
First, the influence of the interface discontinuity parameters (radius and frequency)

on the effective elastic parameters of the contact zones is analysed. For this purpose the
FORTRAN subroutine which computes expected values and variations of the averaged
Young's modulus and Poisson's ratio value was implemented. In numerical tests we assume
the number of the interface discontinuities in the matrix and fiber contact zone as 4, 10, 20
and 40 with the width of the observed contact region varying between 4.0 x 10- 3 and
2.0 x 10-2

. The results of these computations are presented in Figs 10-15: the expected
values of the homogenized Young's modulus functions are given in Figs 10 and 11, the
averaged Poisson's ratio functions in Figs 12 and 13 and the variances of the Young's
modulus functions in Figs 14 and 15. All of these variables are marked, respectively, on the
vertical axis; on the horizontal axis the expected value of the radius of the interface defects
is given.

As one may expect, the resulting expected values of the homogenized Young's modulus
in both the matrix and the fiber regions (and similarly for the Poisson's ratio) are linear
functions of the contact zone widths. The variances of the averaged Young's modulus are
non-linear functions of this variable, and its non-linearity is directly dependent on the
number of interface defects.

Comparing Figs 10 and 11 with Figs 14 and 15 it can be seen that the Young's modulus
in the matrix contact zone is, for the present problem, much more sensitive to variation in
its parameters than the same modulus in the fiber contact zone. This is implied by the
greater coefficient of variation in the matrix region than in the fiber. On the other hand,
homogenized elastic properties are derived by averaging their values in both the regions.
Thus in the matrix, because of the larger volume of "bubbles" compared to fiber "teeth",
greater changes in these properties can be expected.

. ' .

E[e1c ]
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Fig. 10. Expected values of homogenized Young's modulus in fiber region.
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Fig. II, Expected values of homogenized Young's modulus in matrix region.

Another interesting effect (cf. Figs 14 and 15) is the increase in the variances of the
homogenized Young's modulus in the matrix contact zone for increasing width of this zone
and the number of "bubbles". The reverse effect occurs for the fiber side of the interface
and its "teeth". This is due to the fact that "bubbles" occupy more than half of the volume
of the corresponding contact zone, and "teeth" less than half.

Next, the probabilistic displacement state in the composite phases interface and ten­
sioned edge is analysed. The expected values of the displacements or their coefficients of
variation are placed on the vertical axes of all figures. The f3 angle which determines the

O,22F:==······~E:f~~~d~.~~.~ -... ~0,219 __ ••.••.
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Fig. 12. Homogenized Poisson's ratio in fiber region.
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Fig. 13. Homogenized Poisson's ratio in matrix region.
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Fig. 15. Variances of homogenized Young's modulus in matrix region.

location of the point on the fiber~matrix boundary with respect to the x or y-coordinate
on the tensioned face is marked on the vertical axes.

The first observation is the significant influence of the matrix discontinuities on the
stochastic displacement fields and the negligible changes of these displacements with respect
to the fiber defects (cf. Table 1). Primarily this is caused by an assumed small coefficient of
variation for the Young's modulus in the fiber in relation to the matrix and the interrelation
of the geometric approximation of these defects on both sides of the interface. Moreover,
this influence is highly sensitive to the relation between the coefficients of variation of the
elastic constants and the contact zone geometry in the composite phases.

A further general observation is the direct proportionality between the number of
interface defects and the volume of the contact zone, and the expected values or the
coefficients of variation of these displacements. Small differences occur in case of the
interface expected values of displacements for larger f3 angles.

By comparing the coefficients of variation of interface displacements (Figs 16 and 17)
we observe quite different forms for the relation between these coefficients and the f3 angle:
the model with a large contact zone shows a high sensitivity to the number of defects.
Changes for the small contact zone are proportional. In the case of the coefficients of the

Table I. Expected values of interface displacements for different number of fiber defects

Small contact zone Large contact zone

0% 25% 50% 0% 25% 50%
pn "teeth" "teeth" "teeth" "teeth" "teeth" "'teeth"

0 5.005 x 10- 4 5.012 X 10- 4 5.007 X 10- 4 4.970 X 10- 4 4.970 X 10- 4 4.969 X 10- 4

11.25 4.970 x 10- 4 4.968 X 10- 4 4.972 X 10- 4 4.961 X 10- 4 4.962 X 10- 4 4.962 X 10- 4

22.5 5.137 x 10- 4 5.138 X 10- 4 5.140 X 10- 4 4.938 X 10- 4 4.938 X 10- 4 4.939 X 10- 4

33.75 5.952 x 10- 4 5.960 X 10- 4 5.960 X 10- 4 4.901 X 10- 4 4.900 X 10- 4 4.900 X 10- 4

45 7.182 x 10- 4 7.182x 10- 4 7.184 x 10- 4 4.850 X 10- 4 4.851 X 10- 4 4.851 X 10- 4

56.25 8.279 x 10- 4 8.285 X 10- 4 8.289 X 10- 4 4.865 X 10- 4 4.864 X 10- 4 4.865 X 10- 4

67.5 9.397 x 10- 4 9.400 X 10- 4 9.404 X 10- 4 4.893 X 10- 4 4.893 X 10- 4 4.893 X 10- 4

78.75 12.876 x 10- 4 12.881 X 10- 4 12.885 X 10- 4 4.978 X 10- 4 4.972 X 10- 4 4.966 X 10- 4

90 37.052 X 10- 4 37.565 X 10- 4 38.082 X 10- 4 24.786 X 10- 4 24.095 X 10- 4 23.390 X 10- 4



Stochastic structural interface defects 3051

a[q]

. ·······i··· _._ .. __ .... -~...

." ....-... ~. -...... --.- . .(.

.......... .j.

- - .. Sf»'discontinuUies

••••• 25%disCQnhnuilies

--O%discontinuities

........... l..-__--.......,-.l

.....• j •• - •••• - •••

._----..:.. : __ .

I

,

.__ .- _ ~ .

--- -_ ~ -

0,0498

0,0496 + -=-1""'""'-

0.05

0,0494 +- + ~

0,0492 +- + ·· · · i· "'~

0,0502

0,0506

0,0504

0,049 +-----+-----I-----+-----I-----+------!-------1
o 11,3 22,S 33,8 4S 56,3 67,5 78,8

Fig. 16. Coefficients of variation of interface displacements for small contact zone.

tensioned edge horizontal displacement variation both the models give approximately
reversed effects (Figs 20 and 21). For example a small contact zone causes larger coefficients
for smaller P values than for larger P (Fig. 20). On both sizes of the contact zones
the changes in the ry, coefficient are inversely proportional to the increase in number of
discontinuities and consequently the relations given in Figs 17 and 21 show some similarity.

Finally, in both the models the expected values of displacement are quite similar with
respect to their locations. In the large contact zone (Figs 19 and 23) the differences between
obtained expected values of displacements for 0%, 25% and 50% of discontinuities are
more significant.

4. CONCLUSIONS AND RECOMMENDATIONS

(1) The approach presented here for solving the contact problem appears to allow for
the first time a direct consideration of the random character of the contact zone geometry,

Fig. 17. Coefficients of variation of interface displacements for large contact zone.
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Fig. 18. Expected values of interface displacements for small contact zone.

at the same time including the randomness of elastic behavior of composite components.
Numerical results obtained by this method show that the interface defects located in the
matrix contact zone have a major influence on the stochastic displacement fields of a
quarter model of the composite periodicity cell, This result, however, strongly depends on
interrelation of variation in Young's modulus in both composite phases and the approxi­
mation of the contact zones geometry.

(2) Homogenization, as used in this paper, is only an intermediate tool used to
obtain an equivalent material with a stochastic character in the contact zone defined in a
deterministic way. Since this averaging is done in a region of relatively small size in
comparison with the overall dimensions of the whole structure, errors resulting from such
simplification should be less than those resulting from the assumed approach to the contact
problem. However, it would be interesting to formulate, similarly to the deterministic
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Fig. 19. Expected values of interface displacements for large contact zone.
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Fig. 20. Coefficients of variation of tensioned edge horizontal displacements for small contact zone.

models (Bensoussan et al., 1978; Lene, 1984; Telega, 1988), the stochastic composite
homogenization problem with random interface defects.

(3) A further novelty in the development of this technique for contact problems would
be the construction of an appropriate plane stochastic finite element. Such an element, for
given parameters of discontinuities distribution, would homogenize properties of the
material within its region. It would enable the analysis of the influence of discontinuity
localization around the fiber circumference on a random displacement state as well as
stresses in a periodicity celL Due to the mathematical-numerical formulation presented
here it is possible to average these discontinuities only uniformly along the whole fiber
circumference. Moreover, it would be possible to implement the different shapes of defects
(triangles, rectangles or hexagonals for example).

(4) Finally, there remains the interesting problem of sensitivity of a periodic fiber
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0,27 + , ; ; c.,,,,._ _ _ ; , .

- '-
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Fig. 21. Coefficients of variation of tensioned edge horizontal displacements for large contact zone.
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Fig. 23. Expected values of tensioned edge horizontal displacements for large contact zone.

composite with random interface defects. This can be formulated as stochastic sensitivity
of the displacement fields with respect to the random shape ofmatrix contact zone boundary
(Dems and Haftka, 1988-1989; Dems and Mr6z, 1987). This problem seems to be important
when considering the main influence of the contact zone and the stochastic character of the
matrix material on expected values and covariances of the displacements. It would be
possible to solve this problem with the particular kind of stochastic interface element
discussed above.
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